Distinguishing between productive and abortive promoters using a random forest classifier in Mycoplasma pneumoniae

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinguishing between productive and abortive promoters using a random forest classifier in Mycoplasma pneumoniae

Distinguishing between promoter-like sequences in bacteria that belong to true or abortive promoters, or to those that do not initiate transcription at all, is one of the important challenges in transcriptomics. To address this problem, we have studied the genome-reduced bacterium Mycoplasma pneumoniae, for which the RNAs associated with transcriptional start sites have been recently experiment...

متن کامل

a comparative study of the relationship between self-, peer-, and teacher-assessments in productive skills

تمایل به ارزیابی جایگزین و تعویض آن با آزمون سنتی مداد و کاغذ در سالهای اخیر افزایش یافته است. اکثر زبان آموزان در کلاس های زبان از نمره نهایی که استاد تعیین میکند ناراضی اند. این تحقیق جهت بررسی ارزیابی در کلاس های زبان انگلیسی به هدف رضایتمندی زبان آموزان از نمره هایشان انجام گرفته است که در آن نمرات ارائه شده توسط سه گروه ارزیاب (ارزیابی خود دانشجو، همسالان واستاد) در مهارت های تولید (تکل...

15 صفحه اول

Thresholding a Random Forest Classifier

The original Random Forest derives the final result with respect to the number of leaf nodes voted for the corresponding class. Each leaf node is treated equally and the class with the most number of votes wins. Certain leaf nodes in the topology have better classification accuracies and others often lead to a wrong decision. Also the performance of the forest for different classes differs due ...

متن کامل

Segmentation of retinal OCT images using a random forest classifier

Optical coherence tomography (OCT) has become one of the most common tools for diagnosis of retinal abnormalities. Both retinal morphology and layer thickness can provide important information to aid in the differential diagnosis of these abnormalities. Automatic segmentation methods are essential to providing these thickness measurements since the manual delineation of each layer is cumbersome...

متن کامل

Monaural Source Separation Using a Random Forest Classifier

We address the problem of separating two audio sources from a single channel mixture recording. A novel method called Multi Layered Random Forest (MLRF) that learns a binary mask for both the sources is presented. Random Forest (RF) classifiers are trained for each frequency band of a source spectrogram. A specialized set of linear transformations are applied to a local time-frequency (T-F) nei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nucleic Acids Research

سال: 2015

ISSN: 1362-4962,0305-1048

DOI: 10.1093/nar/gkv170